Quelle est la probabilité qu'une corde du cercle, choisie au hasard, possède une longueur supérieure à sqrt(3) ?
Choisie au hasard comment?
Si les deux points sont placés indépendament sur la circonférence ça doit être un tiers
Il suffit de tracer le triangle avec le premier point comme sommet pour voir que le deuxième point a une chance sur trois de tomber dans l'arc de cercle opposé (en gros le raisonnement d'Alkanor).
Bon, j'ai trouvé autre chose.
On détermine la corde par l'aire qu'elle découpe dans le cercle. On choisit l'aire par un tirage uniforme sur l'intervalle ]0,pi/2[ (moitié de l'aire du cercle).
Comme l'aire du triangle équilatéral de côté sqrt(3) est 3/4, l'aire découpée à l'extérieur par chaque côté est (pi-3/4)/3 = pi/3-1/4.
La probabilité qu'on cherche est le rapport entre ces deux aires: (pi/3-1/4) / (pi/2) .